## The Flight from Maturity

Gary Gorton, Yale and NBER
Andrew Metrick, Yale and NBER
Lei Xie, Yale

#### Preview

- During the crisis short-term lending became shorter and shorter.
- BearingPoint: "Borrowing money from other banks or even between different departments of the same bank for more than a day has become very difficult."
- BP interviews: "...liquidity in the unsecured market is currently concentrated in 'Overnight' transactions."

#### Preview continued

- We study three short-term unsecured markets: CP, FF, Eurodollars, and the secured market—repo.
- Show that in normal times these markets are the same, i.e., all are 'near' riskless. i.e., borrowers are riskless.
- In the crisis, there are no riskless borrowers.
   There is a flight from maturity.

## Four Money Markets

- Secured market: repo lenders get collateral.
- Unsecured markets appear to screen borrowers to maintain high quality.
  - CP issuers require minimum ratings—orderly exit.
  - FF-must be a regulated bank.
  - Eurodollars-largely regulated entities.

# Spreads and the Slope of the Term Structure of Spreads

- $r_{ti}^{\tau}$  is the annualized rate of return at time t for money market instrument i with maturity  $\tau$ .
- Define:  $\theta_{t,i}{}^{\tau} \equiv r_{t,i}{}^{\tau} r_{t,OIS}{}^{\tau}$  as the <u>spread</u> between the rate on money market instrument i and the overnight index swap (OIS) rate at date t for maturity  $\tau$ .
- $\Phi_{t,i}^{\tau 2,1} \equiv \theta_{t,i}^{\tau 2} \theta_{t,i}^{\tau 1}$ , where  $\tau 2 > \tau 1$ , is the <u>slope</u> of the term structure of spreads (various maturities).

## Preliminary Hypotheses about Money Markets

- 1.  $\Theta_{t,i}^{\tau} \approx 0$ , for i=CP, FF, Euro\$, and for all  $\tau$ . I.e., borrowers in unsecured markets are screened. Only high quality firms can borrow. Money markets are near riskless.
- 2.  $\Phi_{t,i}^{\tau 2,1} \approx 0$ , i.e., term structure flat; no term premium. (It could be that  $\theta_{t,i}^{\tau} > 0$ , but term structure flat.)

## Crisis Hypotheses

- Crisis: An event in which there are no high quality firms in the money markets.
- One possible outcome: no trade at all. For the CP market we have issuance data, and there was (short) issuance during the crisis.
- In the unsecured market, screening during the crisis might take the form of "time tranching," i.e., lenders are only willing to lend at very short horizons. Borrowers want long.
- 3. Hypothesis:  $\Phi_{t,i}^{\tau 2,1} > 0$ , i.e., the slope becomes positive the flight from maturity.
- In repo, haircuts rise. In addition, it may be that  $\Phi_{t,i}^{\tau 21} > 0$ .

## Crisis Hypotheses continued

- $\Phi_{t,i}^{\tau 2,1} > 0$ , i.e., the slope becomes positive.
- The slope becomes positive if there are no safe borrowers....

...and no one wants to lend long.

• So, Hypothesis 4:  $\Delta\Phi_{t,i}^{\tau 2,1} > 0 \rightarrow$  counterparty risk is higher in the future.

Should we express the hypothesis as delat\_ $\Phi$ t,i $\tau$ 2,1 > 0 (if slope increases) then counterparty risk is higher in the future?

#### Data

- Daily data Jan 2006- Apr 2009 on repo rates for:
  - Various terms: Overnight, 1 month, 3 month.
  - Various asset classes: different ABS classes, CLOs,
     CDOs, corporate bonds (by rating category).
- Daily data on FF, CP, Eurodollars for various terms.
- Issuance data for CP, by category of issuer.

the period should be 2006 to 2009. Lei, 9/29/2010L2

## Preliminaries: Window-Dressing



### Preliminaries continued



$$\theta^{\tau}_{t,repo} = \alpha + \beta Quarter - end \ Dummy + \epsilon_t$$



Here the dependent variable should be overnight spread? Lei, 9/29/2010 L1























Hypothesis 4:  $\Delta\Phi_{ti}^{\tau 21} > 0 \rightarrow$  counterparty risk is higher in the future.

$$\begin{split} \Delta\theta_{t,repo}^{2m} = \alpha + \sum_{j=1}^{n} \beta_{j\Delta} \Phi_{t-j,repo}^{1m1d} + \sum_{j=1}^{n} \Delta\theta_{t-j,repo}^{2m} + Qend\ dummy + \Delta 10Yr\ Treasury \\ + \Delta(10YrTreasury)^2 + \Delta VIX + \Delta S\&P + \Delta(10Yr - 2Yr) + \varepsilon_t \end{split}$$

## Repo: Pre-Crisis

$$\begin{split} \Delta\theta_{t,repo}^{3m} &= \alpha + \sum\nolimits_{j=1}^{s} \beta_{j\Delta} \, \Phi_{t-j,repo}^{1m1d} + \sum\nolimits_{j=1}^{s} \Delta\theta_{t-j,repo}^{2m} + Qend\ dummy + \Delta 10Yr\ Treasury \\ &+ \Delta (10YrTreasury)^2 + \Delta VIX + \Delta S\&P + \Delta (10Yr - 2Yr) + \varepsilon_t \end{split}$$

|          | <aa< th=""><th>A-AAA</th><th>AA-AAA</th><th></th><th></th><th></th><th></th><th></th><th>Unpriced ABS /</th><th></th></aa<> | A-AAA     | AA-AAA |        |        |          |          |                   | Unpriced ABS / |                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|----------|----------|-------------------|----------------|-----------------|
|          | ABS-                                                                                                                        | ABS-      | ABS-   |        |        | AA-AAA   | BBB+/A   |                   | MBS / All      | <b>Unpriced</b> |
|          | RMBS/                                                                                                                       | Auto / CC | RMBS/  | AA-AAA | AA-AAA | Corporat | Corporat | General           | Sub-           | CLO/            |
|          | CMBS                                                                                                                        | / SL      | CMBS   | CDO    | CLO    | es       | es       | <b>Collateral</b> | Prime          | CDO             |
| Slope F- |                                                                                                                             |           |        |        |        |          |          |                   |                |                 |
| test     | 0.07                                                                                                                        | 6.87      | 4.65   | 4.59   | 0.07   | 4.00     | 3.72     | 5.42              | 80.0           | 0.07            |
| ProbF    | 0.80                                                                                                                        | 0.01      | 0.03   | 0.03   | 0.80   | 0.05     | 0.05     | 0.02              | 0.77           | 0.80            |
| Lags F-  |                                                                                                                             |           |        |        |        |          |          |                   |                |                 |
| test     | 52.30                                                                                                                       | 0.17      | 0.35   | 0.15   | 52.30  | 0.51     | 2.40     | 82.22             | 50.79          | 52.30           |
| ProbF    | 0.00                                                                                                                        | 0.68      | 0.55   | 0.70   | 0.00   | 0.48     | 0.12     | 0.00              | 0.00           | 0.00            |

## Repo: During Crisis

$$\begin{split} \Delta\theta_{t,repo}^{3m} &= \alpha + \sum\nolimits_{j=1}^{4} \beta_{j\Delta} \, \Phi_{t-j,repo}^{1m1d} + \sum\nolimits_{j=1}^{4} \Delta\theta_{t-j,repo}^{3m} + Qend\ dummy + \Delta 10Yr\ Treasury \\ &+ \Delta (10YrTreasury)^2 + \Delta VIX + \Delta S\&P + \Delta (10Yr - 2Yr) + \varepsilon_t \end{split}$$

|          | <aa< th=""><th>A-AAA</th><th>AA-AAA</th><th></th><th></th><th></th><th></th><th></th><th>Unpriced ABS /</th><th></th></aa<> | A-AAA            | AA-AAA |        |        |          |          |            | Unpriced ABS / |                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|--------|----------|----------|------------|----------------|-----------------|
|          | ABS-                                                                                                                        | ABS-             | ABS-   |        |        | AA-AAA   | BBB+/A   |            | MBS / All      | <b>Unpriced</b> |
|          | RMBS/                                                                                                                       | <b>Auto / CC</b> | RMBS/  | AA-AAA | AA-AAA | Corporat | Corporat | General    | Sub-           | CLO/            |
|          | CMBS                                                                                                                        | / SL             | CMBS   | CDO    | CLO    | es       | es       | Collateral | Prime          | CDO             |
| Slope F- |                                                                                                                             |                  |        |        |        |          |          |            |                |                 |
| test     | 8.86                                                                                                                        | 24.40            | 8.54   | 2.61   | 11.11  | 11.49    | 13.69    | 8.84       | 2.87           | 2.18            |
| ProbF    | 0.00                                                                                                                        | 0.00             | 0.00   | 0.11   | 0.00   | 0.00     | 0.00     | 0.00       | 0.09           | 0.14            |
| Lags F-  |                                                                                                                             |                  |        |        |        |          |          |            |                |                 |
| test     | 18.41                                                                                                                       | 11.85            | 16.94  | 0.01   | 12.11  | 21.46    | 24.61    | 41.24      | 0.32           | 0.02            |
| ProbF    | 0.00                                                                                                                        | 0.00             | 0.00   | 0.92   | 0.00   | 0.00     | 0.00     | 0.00       | 0.57           | 0.88            |

## CP, FF, Euro\$: Pre-Crisis

$$\begin{split} \Delta\theta_{e,t}^{\otimes m} &= \alpha + \sum\nolimits_{j=1}^{4} \; \beta_{j\Delta} \Phi_{e-j,t}^{1m1d} + \sum\nolimits_{j=1}^{4} \Delta\theta_{e-j,t}^{\otimes m} + Qend\; dummy + \Delta 10 \forall r\; Treasury \\ &+ \Delta (10 Yr Treasury)^2 + \Delta VIX + \Delta S\&P + \Delta (10 Yr - 2 Yr) + \varepsilon_t \end{split}$$

|              | A2/P2<br>Nonfinancial | AA Asset-<br>backed | AA Financial | AA<br>Nonfinancial | LIB  | Fed   |
|--------------|-----------------------|---------------------|--------------|--------------------|------|-------|
|              |                       |                     |              |                    |      |       |
| Slope F-test | 0.09                  | 1.08                | 1.40         | 0.81               | 1.22 | 0.85  |
|              |                       |                     |              |                    |      |       |
| ProbF        | 0.76                  | 0.30                | 0.24         | 0.37               | 0.27 | 0.36  |
|              |                       |                     |              |                    |      |       |
| Lags F-test  | 92.40                 | 0.42                | 0.02         | 0.17               | 2.99 | 95.68 |
|              |                       |                     |              |                    |      |       |
| ProbF        | 0.00                  | 0.51                | 0.90         | 0.68               | 0.08 | 0.00  |

## CP, FF, Euro\$: During-Crisis

$$\begin{split} \Delta\theta_{e,t}^{\otimes m} &= \alpha + \sum\nolimits_{j=1}^{4} \; \beta_{j\Delta} \Phi_{e-j,t}^{1m1d} + \sum\nolimits_{j=1}^{4} \Delta\theta_{e-j,t}^{\otimes m} + Qend\; dummy + \Delta 10 \forall r\; Treasury \\ &+ \Delta (10 Yr Treasury)^2 + \Delta VIX + \Delta S\&P + \Delta (10 Yr - 2 Yr) + \varepsilon_t \end{split}$$

|              | A2/P2<br>Nonfinancial | AA Asset-<br>backed | AA Financial | AA<br>Nonfinancial | LIB   | Fed   |
|--------------|-----------------------|---------------------|--------------|--------------------|-------|-------|
| Slope F-test | 40.80                 | 3.99                | 1.92         | 0.48               | 6.17  | 29.63 |
| Prob F       | 0.00                  | 0.05                | 0.17         | 0.49               | 0.01  | 0.00  |
| Lags F-test  | 14.44                 | 34.81               | 22.82        | 9.17               | 27.11 | 15.80 |
| Prob F       | 0.00                  | 0.00                | 0.00         | 0.00               | 0.00  | 0.00  |



## Final Thoughts

- Money markets normally consist of riskless borrowers (who window dress).
- In the crisis, there are no riskless borrowers.
- Lenders generally flee to very short maturity in response; spread term structures positive.
- Positive slopes forecast counterparty risk lenders right to flee longer maturities.
- Suggests role of slope as indicator for policy.